ДОМАШНЕЕ ЗАДАНИЕ ПО КУРСУ

«Прикладная оптика»

Телеобъектив состоит из двух тонких компонентов (линз): $f'_1 = -f'_2$ Расстояние между линзами $d = 0.5f'_1$. Между линзами на расстоянии 0.4d от первой линзы расположена апертурная диафрагма.

$$f'_1 = 80 + 5 \cdot N$$

где N - порядковый номер задания по списку группы.

Найти диаметр этой диафрагмы, если относительное отверстие телеобъектива D/f'=1:5.

Определить диаметры оправ 1^{-й} и 2^{-й} линзы при отсутствии виньетирования, если угловое поле объектива в пространстве предметов $2\omega = 8^{\circ}$.

Найти диаметр полевой диафрагмы и расстояние от 2^{-i} линзы до этой диафрагмы.

Определить освещенность изображения в центре поля и на краю поля, если бесконечно удаленный предмет (дневное небо) имеет яркость $L=10^4$ кд м^{-2} , а коэффициент пропускания оптической системы $\tau=0.8$.

Рассчитать по формулам углов и высот ход осевого, верхнего, главного и нижнего лучей. Проверить высоты этих лучей в плоскости апертурной и полевой диафрагмы.

Выполнить чертеж оптической системы тонких компонентов в масштабе 1 : 1 (или 1 : 2), показав на нём положение входного и выходного зрачков и всех диафрагм.

Начертить ход осевого луча, проходящего через край входного зрачка; верхнего, главного и нижнего лучей наклонного пучка для края поля.

Cpor cyare D.3. - 13 neges 2